Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, dense molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH + absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH + absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appears to be important in the evolution of massive galaxies in their most active phases. We find a correlation between the OH + absorption optical depth and the dust temperature, which may suggest that warmer starbursts are more compact and have higher cosmic-ray energy densities, leading to more efficient OH + ion production. This is in agreement with a picture in which these high-redshift galaxies are “scaled-up” versions of the most intense nearby starbursts.more » « less
- 
            Abstract We present a new method based on information theory to find the optimal number of bands required to measure the physical properties of galaxies with desired accuracy. As a proof of concept, using the recently updated COSMOS catalog (COSMOS2020), we identify the most relevant wave bands for measuring the physical properties of galaxies in a Hawaii Two-0- (H20) and UVISTA-like survey for a sample ofi< 25 AB mag galaxies. We find that with the availablei-band fluxes,r,u, IRAC/ch2, andzbands provide most of the information regarding the redshift with importance decreasing fromrband tozband. We also find that for the same sample, IRAC/ch2,Y,r, andubands are the most relevant bands in stellar-mass measurements with decreasing order of importance. Investigating the intercorrelation between the bands, we train a model to predict UVISTA observations in near-IR from H20-like observations. We find that magnitudes in theYJHbands can be simulated/predicted with an accuracy of 1σmag scatter ≲0.2 for galaxies brighter than 24 AB mag in near-IR bands. One should note that these conclusions depend on the selection criteria of the sample. For any new sample of galaxies with a different selection, these results should be remeasured. Our results suggest that in the presence of a limited number of bands, a machine-learning model trained over the population of observed galaxies with extensive spectral coverage outperforms template fitting. Such a machine-learning model maximally comprises the information acquired over available extensive surveys and breaks degeneracies in the parameter space of template fitting inevitable in the presence of a few bands.more » « less
- 
            Abstract We report new observations toward the hyperluminous dusty starbursting major merger ADFS-27 ( z = 5.655), using the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). We detect CO ( J = 2 → 1), CO ( J = 8 → 7), CO ( J = 9 → 8), CO ( J = 10 → 9), and H 2 O (3 12 → 2 21 ) emission, and a P Cygni−shaped OH + (1 1 → 0 1 ) absorption/emission feature. We also tentatively detect H 2 O (3 21 → 3 12 ) and OH + (1 2 → 0 1 ) emission and CH + ( J = 1 → 0) absorption. We find a total cold molecular mass of M gas = (2.1 ± 0.2) × 10 11 ( α CO /1.0) M ⊙ . We also find that the excitation of the star-forming gas is overall moderate for a z > 5 dusty starburst, which is consistent with its moderate dust temperature. A high-density, high kinetic temperature gas component embedded in the gas reservoir is required to fully explain the CO line ladder. This component is likely associated with the “maximum starburst” nuclei in the two merging galaxies, which are separated by only 140 ± 13 km s −1 along the line of sight and 9.0 kpc in projection. The kinematic structure of both components is consistent with galaxy disks, but this interpretation remains limited by the spatial resolution of the current data. The OH + features are only detected toward the northern component, which is also the one that is more enshrouded in dust and thus remains undetected up to 1.6 μ m even in our sensitive new Hubble Space Telescope Wide Field Camera 3 imaging. The absorption component of the OH + line is blueshifted and peaks near the CO and continuum emission peak, while the emission is redshifted and peaks offset by 1.7 kpc from the CO and continuum emission peak, suggesting that the gas is associated with a massive molecular outflow from the intensely star-forming nucleus that supplies 125 M ⊙ yr −1 of enriched gas to its halo.more » « less
- 
            Abstract CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r , in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5 σ , or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
